# Quasiparticles in Superconducting Quantum Circuits

Eli Levenson-Falk University of Southern California

## Acknowledgements

### **Quantum Nanoelectronics Laboratory**

Irfan Siddiqi (PI) R. Vijay (now Tata Institute) Nicolas Roch (now CNRS Néel) Andrew Eddins

### Yale University

Leonid Glazman Filip Kos

# Superconducting Electronics

- Quantum bits and artificial atoms
  - Quantum computing: Shor's algorithm, Grover's algorithm
  - Quantum simulation: Simulate dynamics, QVE
  - Large-N systems
- Quantum-limited amplifiers
  - Ultra-low-noise amplification of microwave signals
  - Squeezed light, light-matter interactions
- Sensitive detectors

# Challenges

- Decoherence: I know  $|\psi(0)\rangle$ , what's  $|\psi(t)\rangle$ ?
- Fidelity: want to store, transfer, and read out information without loss
- Scalability: more is different!

Improve technology  $\rightarrow$  do new experiments  $\rightarrow$ discover new limiting factors  $\rightarrow$  figure out how to fix  $\rightarrow$  improve technology...

First, the basics!

### Building Blocks: Superconducting Resonator (a.k.a. Griffiths Chapter 2)





#### Nonlinear inductor

### **Building Blocks: SQUID**



 $I_{C} = 2 I_{0} \left| \cos \frac{\pi \Phi}{\Phi_{0}} \right|$  $L_{S} = \frac{L_{J}}{2 \left| \cos \frac{\pi \Phi}{\Phi_{0}} \right|}$ 

For our purposes: SQUID acts as flux-tunable JJ

### Transmon Qubit / AA



- Weakly anharmonic oscillator (1-10% anharmonicity typical)
- Wavefunctions are harmonic oscillator states, 1-20 GHz
- Isolate  $|g\rangle$ ,  $|e\rangle$  as  $|0\rangle$ ,  $|1\rangle$
- Simple, coherent, easy to couple



- Couple qubit to linear resonator / cavity
- Qubit can exchange E with cavity or modify cavity resonance
- Cavity protects qubit from environment
- Can be used for coupling, storage, as qubit, quantum optics, etc.

### Decoherence

I know  $|\psi(0)\rangle$ , what's  $|\psi(t)\rangle$ ?

- Relaxation:  $|1\rangle \rightarrow |0\rangle$  (a.k.a.  $T_1$ )
  - Dielectric loss
  - Purcell decay
  - Quasiparticles
- Spurious excitation:  $|0\rangle \rightarrow |1\rangle$ 
  - "Hot Purcell" Quasiparticles
- Dephasing:  $a|0\rangle + be^{i\phi}|1\rangle$ , scrambles  $\phi$  (a.k.a.  $T_{\phi} \rightarrow T_{2}$ )
  - "Hot cavity"
  - Flux noise
  - Quasiparticles

### Superconducting Quasiparticles



# Superconducting Quasiparticles

- Tunnel across junction  $\rightarrow$  relaxation and spurious excitation (T<sub>1</sub>)
- Transport in bulk  $\rightarrow$  relaxation (weak) (T<sub>1</sub>)
- Trap in junction  $\rightarrow$  dephasing (T<sub>2</sub>)

Too cold for thermal QPs, but QPs exist! Hot spots? Thermal radiation? Cosmic rays? Defects? Need to better understand behavior Use trapping measurements

Taupin 2016, Vool 2014, Wang 2014, Levenson-Falk 2014, Ristè 2013, Wenner 2013, Bretheau 2013, Olivares 2013, Barends 2011, Lelander 2011, Zgirski 2011

## How to Trap Your Quasiparticles



- QP falls into subgap state, gets stuck (deeper than  $k_B T$ )
- Need to be able to measure  $\rightarrow$  circuit sensitive to trap!
- Ideally, we can:
  - 1. Tune trap energy
  - 2. Reset trap on demand
  - 3. Measure single trapped QP
  - 4. Measure dynamics

#### Andreev States 1.0 $E_{A\pm} = \pm \Delta \left| 1 - \tau \sin^2 \frac{\delta}{2} \right|$ $\Delta_{A}$ 0.5 0.0 ∎∢ -0.5 $\tau = 0.5$ -1.0 0.5 1.5 1.0 2.0 0.0 $\delta / \pi$

- Semiconductor picture: 1D conduction channels
- Trap forms in transmissive channel
- Trap depth tuned by phase bias
- Trapped QP detectable by effect on *I<sub>c</sub>* (i.e. on *L<sub>j</sub>*)

## Nanobridge Junction



- 3D: thin bridge, thick banks  $\rightarrow$  acts like ideal weak link
- All superconducting → trapping only due to Andreev states
- Many channels (100 1000 typical)
- Known distribution of transmittivity  $\tau: \rho(\tau) \sim \frac{1}{\tau\sqrt{1-\tau}}$

Vijay, Levenson-Falk, and Siddiqi 2010 Levenson-Falk, Vijay, and Siddiqi 2011

## NanoSQUID Resonator



Model system, similar QP behavior to qubit

Levenson-Falk 2014



500nm

### **Resonance Lineshapes**



No flux (phase) bias, no trap  $\rightarrow$  ordinary resonance



Multiple resonances at finite flux!



Multiple resonances at finite flux!

### Fits to Resonance Lineshapes



- Ensemble measurement—averages over all configurations
- Thermal above 75 mK
- Not Poisson-distributed; P(n=2) higher than predicted from measured P(n=0)

### Number of QPs



As T rises:

-Each individual QP less likely to trap (thermally excited) -QP density rises (thermal population)



### **Bias Tone Spectroscopy**



Consistent with theory

### Untrapping and Retrapping



### **Time Constants**



Retrapping time: 
$$au_T = \left(\frac{2\Delta}{\Delta - E_A}\right)^2 au_R$$

### Next Steps

- Observe real time trapping / untrapping
- Statistics of QPs—correlation?
- Measure non-thermal distribution
- Explore use as detector
- Mitigation strategies—what limits annihilation rate?

Want to see things in real time, single-shot Need more SNR!



AMPLIFIER MAKES AMBIENT NOISE INCONSEQUENTIAL! Amplifiers, in general, degrade signal to noise ratio Usual amplifier (HEMT) limits SNR

### Nonlinear Resonator



Many levels, can treat classically





## Lumped-element Josephson Parametric Amplifier (LJPA)





- 20-30 dB gain, 5-50 MHz BW
- Quantum limited noise:  $k_B T_N = \frac{\hbar \omega}{2} \approx 150 \text{ mK}$
- Can be used as squeezer for signals and vacuum



- Light-matter interactions, quantum measurement
- Lower noise "beyond quantum limit" for detectors
- Plug-n-play resource for quantum optics!

Murch 2013, Shokair 2014

# THANK YOU!