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Compressible states of fermions at finite density

The metallic states that we understand well are Fermi liquids.
Landau quasiparticles — poles in single-fermion Green function
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quasiparticles are long-lived: width is I' ~ w?,

residue Z (overlap with external e™) is finite on Fermi surface.



Non-Fermi liquids exist but are mysterious

There are other states with a Fermi surface, but no pole at w = 0.
e.g.. ‘normal’ phase of optimally-doped cuprates: (‘strange metal’)

Momentum

among other anomalies indicating absence of quasiparticles:
ARPES shows gapless modes at finite k£ (a Fermi surface)

with width T'(wy) ~ wy, vanishing residue Z kSO 0.

NFL: Still a sharp Fermi surface s00F
but no long-lived quasiparticles. " j:z
More prominent %::
mystery of the strange metal phase: i
e-e scattering: p ~ T2, phonons: p ~ T%, ... 0

no known robust effective theory: p ~ T.
[S. Martin et al, PRB41, 846 (1990)]



Non-Fermi liquids exist but are mysterious
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Non-Fermi liquid from non-Holography
e Luttinger liquid in 1+1 dims. GF(k,w) ~ (k — w)® v
e loophole in RG argument for ubiquity of FL:
couple a Landau FL perturbatively to a bosonic mode

(e.g.: magnetic photon, emergent gauge field, critical order parameter...)

q — mnonanalytic behavior in
R 1 .
bokma b NFL.

[Huge literature: Hertz, Millis, Nayak-Wilczek, Chubukov, S-S Lee, Metlitski-Sachdev,

Mross-JM-Liu-Senthil, Kachru, Torroba, Raghu...]

Not strange enough: 1
These NFLs are not strange metals S

in terms of transport. p ~ 7?12 > T o

If the quasiparticle is killed by a boson with w ~ ¢*, © -9
zn~ 1,

small-angle scattering dominates

= ‘transport lifetime’ > ‘single-particle lifetime’



Frameworks for non-Fermi liquid in d > 1
e a Fermi surface coupled to a critical boson field

L =1 (w—vpky)v+ La) + Yipa —

k k-q k

e a Fermi surface mixing with a bath of critical fermionic
fluctuations with large dynamical exponent z > 1

Discovered with AdS/CFT [Faulkner-Liu-JM-Vegh 0907.2694, Faulkner-Polchinski
1001.5049, FLMV+Igbal 1003.1728]

L =49 (w—vrky)Y+ L(x) + x + ¥X

x: fermionic operator with G = (xx) = c(k)w?”

»@»:—»— + > | > | ...

i.e., YW g.



Charge transport and momentum sinks

instead of this:
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[Varma et al] g::: /

The contribution to the conductivity from
the Fermi surface
[Faulkner-Igbal-Liu-JM-Vegh, 1003.1728 and

1306.6396]
is ppg ~ T? when ¥ ~ w
Dissipation of current is controlled by

2v

the decay of the fermions into the x DoFs.
— single-particle lifetime controls
transport.
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A word about the holographic construction

charged
black hole
horizon

The near-horizon region of the geometry AdSs x R?
describes a z = oo fixed point at large N:

many critical dofs which are localized.

Shortcomings:

e The Fermi surface degrees of freedom are a small part (o(N?))
of a large system (o(N?)).

e Here N? is the control parameter which makes gravity
classical (and holography useful).

e Understanding their effects on the black hole requires
quantum gravity. [Some attempts: Suh-Allais-JM 2012, Allais-JM 2013]

All we need is a z = oo fixed point

(with fermions, and with U(1) symmetry).



SYK with conserved U(1)

A solvable z = oo fixed point [Sachdev, Ye, Kitaev]:

N
Hsvk = Y JisexX ] XXX
2
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Jijer =0, ijkz = QJW
G= —— + ==+ ~0-O~ - S
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= G(w) o< (iw) 2,
Also useful is the ‘bath field’: ¥, = jjkg[X;Xle./ which has

(X% o (W), AR) = %

Duality: this model has many properties in common with gravity (plus

electromagnetism) in AdS5.



Using SYK clusters to kill the quasiparticles and take
their momentum

CE T,
N s
One SYK cluster < AdSs: gﬂ} "
gg% «s* W
To mimic AdS> x R?, consider a d-dim’l lattice of SYK models
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Couple SYK clusters to Fermi surface

® [D. Ben-Zion, JM, 1711.02686: couple by hybridization

mt Z gmwzxm + h C.

Z‘l

by random gs (giz = 0, GizGjy = 51'.7'51'2/92/]\7)

— Evidence for finite-g, N fixed point, ‘strange semiconductor’ with
p(T) ~ T~ Y2,

® [A. Patel, JM, D. Arovas, S. Sachdev, 1712.05026, D. Chowdhury, Y. Werman, E. Berg, T.

senthil, 1801.06178]: couple by density-density interaction

lnt ngabl]wxaw bX:EZX(E] + h C.

337,

by random gs (grabz] = 0 GzrabijGz'a’b’ il j = 6Labij,:v’a'b'i’j'g2/N)
— Controlled (1ntermedlate—temperature) marginal fermi liquid,

p(T) ~ T, realistic magnetoresistance.



Pause to advertise related work

> [Gu-QiStanford: & chain of SYK clusters with 4-fermion
couplings (no hybridization, no Fermi surface)

GanFancirnefany

> [Banerjee-Altman]: add all-to-all quadratic fermions to SYK

> [Song-Jian-Balents: & chain of SYK clusters with quadratic

(no locality)

couplings (no Fermi surface)



Large-N analysis

1

—— i = <XLXy> , .7 7N = disorder contraction
Full ¥ propagator: SIS
—— et e e b e SN e SN T(N’—l)_/
= the 1 self-energy is X(w, k) = G(w)
(just as in the holographic model). For more general ¢ in
H(x) = Jilﬂ.iqle T Xig we’d have
CREN S e L — v(g) =15
w—vrky = G(w) Coupling to bath field would give
o(g)=—5+3 3 +1
This hasy:—i: :
L Gw) ~wl
= (1)~ 5




Does the Fermi surface destroy the clusters?
Leading 1/N contributions to Gzy:
Giz =0,  GizGjy = 6ij0zyg*/N.
The ‘SYK-on’ propagator G looks
like:

are still local

(on average), and are less singular
—1/2

-

than w

— z = oo behavior survives.

Replica analysis reproduces diagrammatic results:
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RG analysis of impurity problem

Weak coupling: Consider a single SYK cluster coupled to FS,

gLt J. TFollowing Kondo literature [Affleck] only s-wave couples:

o 1
Hps =50 | dr (v} —whdrn) = Winl =5
AH = gy} (0)x. AH = gy} (0)X.

Xi = Jijle}Xsz- X = 9iXi/9-
Note for later:

Coupling to x: Coupling to bath field: density-density

- coupling:
[ vIxl=-1+i+i=-1 [fdtyiy]l=-1+L1+3=1 [ f;wifx]:
i . is irrel . _
is relevant is irrelevant _1+%+%+i+i_%

. is irrelevant.
Strong coupling: At large enough g (g > t,J), this is a

highly-underscreened Anderson model: ¥, and x, = %ZZ giXiz Pair up,
N — N -—1.

H:gzwlxad-h.c. [ N/ —>£



Topology of coupling space

Hine =3 g0'x + h.c.

Possibilities for beta function

(arrows toward IR):
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If we find a fixed point, it is stable.

Consequences for entanglement

entropy of half-chain at small go:

S1/2

1) log(£)

log(L)/6

log(L
L og(L)

crossover

¢ log(Ly/6

log(L)

L

crossover

EXpeCt3 Lcrossover ~ (gUN)7

-

4 .



Numerical results

" log(Ly

.| coupling to bath field

(1)  Half-chain
entanglement

entropy grows
with L

than free-fermion

faster

answer!

(2) Coupling to
bath field gyx is
irrelevant — same
as free fermion

answer.
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(3) Growth
doesn’t happen
for quadratic

clusters (SYKo>)

(4) At large g,
entanglement is

destroyed.



Correlation functions
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Conclusions on hybridization coupling

e I an interesting NFL fixed point.
e It’s not Lorentz invariant.

e Numerical evidence is in 1d, but it’s not a Luttinger liquid: ¢ # 1.
e Can access perturbatively by ¢ =2 + ¢

(H(X) = Jig-igXhy - Xa,)-

Cartoon map of phases:
"

e It has a Fermi surface
(singularity of Gr at w — 0,k — kp)

but it’s not metallic! p(T) ~ T~1/2.

strangeﬁu\'ﬂ
semiconductor|

g/t

(Warning: this is a cartoon.)



Density-density coupling

[Aavishkar Patel, JM, D. Arovas, S. Sachdev, 1712.05026]

Demanding an IR fixed point is asking too much.

Hing = Z Z Z gzabz]wxad}szmxxj +h.c.

z 4,j=1a,b=1

2
(gwabij - O-, GzabijGz'a’v'i! j = 6mabij,z’a’b'i’j/g /N)

Large N, M Schwinger—Dyson equations are:

Srert = =G G = NG G GV G Gliwn) = sty
Ei) =g GT T,GT,.,./GTliT,

1, x coupled only by local Green’ s function of itinerant fermions:

Gd)(iwn) = fddpr(iwnap f (271.):1 iwn, — €k+ﬂw SV (iwn) 7%V(O)Sgn(w’ﬂ)
(v(0) = dos at FS)




Fate of conduction electrons
The effect on the itinerant fermions is then

S (w,q) = ~g /dw1 ngn “ Sgn(wQ)Gw(w + w1 + we)

[1/2 |wo|1/2

~ ¢°v(0) (wlogw/A — inw)

b _ ig?v(0)T Wn 2nTeVE 1 Wy wn
EV(iwn, 9) = 37 oo 72 2ne) 7377 <71n (7) + 0 (525) +7r>
— single-particle decay rate = transport scattering rate.
2
y=—2Im¥%(w=0) = —LLOT__ ( € measures filling.)

Jy/ 7 cosh(2nE)
_I_

Precedent for this mechanism:
" ¢ a1 59) Tmy (w0, ) = IM  Incoherent metal: one big SYK
arma et a 3 —
Im tanh < _[;M'*{IJ-/QL — Cluster, no FS [av Song-Jian-Balents,
> 2T

Parcollet-Georges 98].

Large N, M with M/N <« 1
. / MFL Marginal fermi liquid: ¥ ~ wlnw.
controls back-reaction on
N1

SYK clusters. 0 Fermi liquid: at finite N, g is an
vl .

With finite bandwidth, three FL Trr(;;zvant perturbation, goes away
in IR.

phases (for g > VtJ):




Transport in a single domain

Both IM and MFL have p(T) ~ T

Ug/IFL:MU%I/(O) / dEy o E1 1
167 J_ o ImX% (Er)|

2
= 0.120251 x MT1J x <”§> cosh'/2(27€).

g

Both violate Wiedemann-Franz law:

oo dFE 2 2 1
JMFL _ KL _ Joo it Efsech ( 2 ) m[E1 zE1/(27r))+z7r}|
MFL - oo dFE 2 (Fq
90 T f 00 27rlseCh ( )|Im[E1¢v zEl/(27r))+z7r}|

— 0.713063 X Lo < Lo = %



Magnetotransport is very different

x=031
[ ——-hth/e=
AT, H)
A(T,0)

Ba-122

IM has no FS and (hence) negligible
magnetoresistance: perturbation theory in hopping

is valid exactly in IM regime: t/(JinT)"? < 1,

HghtoH

. _ 2
. (Jim =g°/J) .
ol | M t2 A IM ,, t'sinB
NI . -
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Ik (K) R /
. i _ Bd?
P(H,T) = p(0,0)0x\/ (ks T) + (ypsptoH) =T B = /e

I. M. Hayes et. al., Nat. Phys. 2016

In MFL: exact quantum Boltzmann equation at large M, N

(1—0,Re(2¥))0:0n(t, k, w) + vik- E(t)n} (w) +vr(k x B2) - Vion(t, k,w) =
26n(t, k,w)Im (¥ (w))

MFL _ v30(0) oo dE 2 gy (ImS%(ED](ve/(2kr))B)
ol = Mg [7, Gitsech® (37) Im[E%(IEl)]2+(vp/(2kp))232’

op "t ~ T s ((vr /kr)(B/T)), o™ ~ =BT *su((vr/kr)(B/T)).
spa(z — o0) o 1/22%, spa(r — 0) o 2°

So far, pr, saturates at large B.



Macroscopic disorder

Suppose u varies from region
to region.

V- J(x)=0,J(z)= oMFL L GMFL 1 BMI ) B for equal-areas.

_ _ . 2 B
o(z) - B(z), B(z) = —Va(x). b - - >
Effective medium theory Moreover, | p, ~ V1T + 2B

25 02

[Stroud 75, Parish-Littlewood]

Simple case: two types of 20
-0.2
domains, approximately equal s s
<
. S
area fraCtlé)IBlS. Mechanism: . 6 §
-0.8

-1.2

-14

[from Parish-Littlewood 03]

Local Hall resistivity lengthens current path « B.

(a)



Some questions we can now ask

® Plasmon spectrum of BSCCO recently measured

T1°(q,0)/T1(q)

by EELS [Mitrano et al 1708.01929]. Apparent agreement

with MFL form of Imx(w, ¢). Can we say more
about plasmon damping in the solvable MFL? About

0.0

05 10 15 C
the doping dependence of x? /o(q)

[from Mitrano et al

1708.01929]
® Acoustic damping in MFL?

® [s my title accurate?

Two aspects of SYK:
Maximal chaos: (|{x'(t), x(0)}?) ~ e !, Ap = 7T

— near the middle of the spectrum.
z = oo local criticality: G(w) ~ w?”
— near the groundstate.

Q: Can we have one without the other?
A [V. Rosenhaus]: Probably not.

Maximal chaos follows from (nearly) CFT};.



The end.

Thank you for listening.

Thanks to Open Science Grid for computer time.



