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Outline:
Main point: proposal for cold-atom quantum simulator for the Abelian
Higgs model in 1+1 dimensions.

Motivation
The lattice Abelian Higgs model (scalar QED) in 1+1 dimensions
(PRD 92, 076003)
The Hamiltonian
Data collapse for Polyakov loop (arXiv:1803.11166)
Possible experimental realization: cold atoms on physical ladders
+ Rydberg-dressed interactions
Simpler limits: quantum Ising model and the O(2) model
Conclusions
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Motivation

Lattice QCD has been very successful at establishing that QCD is
the theory of strong interaction, however some aspects remain
inaccessible to classical computing.

Finite density calculations: sign problem with Monte Carlo
calculations with complex actions.

Real time evolution: requires detailed information about the
Hamiltonian and the eigenstates which is usually not available
from conventional MC simulations at Euclidean time.

Successes in using cold atoms to quantum simulate Condensed
Matter systems (Mott transition, AFM order, BCS-BEC crossover,
etc).

Shan-Wen Tsai (UCR) Polyakov Loop with Cold Atoms SCCMS, UCR, June 8, 2018 3 / 28



The Abelian Higgs model on a 1+1 space-time lattice

complex (charged) scalar field φx = |φx |eıθx attached to the
space-time sites x
Abelian gauge field Ux ,µ = eiAµ(x) on the links from x to x + µ̂.

Ux,ν

φx

S = Sg + Sh + Sλ, Z =

∫
Dφ†DφDUe−S

where the gauge part is:

Sg = −βpl
∑

x

∑
ν<µ

ReTr [Ux ,µν ]

Ux ,µν = Ux ,ŝUx+ŝ,τ̂U†x+τ̂ ,ŝU†x ,τ̂ → FµνF
µν
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The Abelian Higgs model on a 1+1 space-time lattice

the hopping part is:

Sh = −κτ
∑

x

[eµφ†xUx ,τ̂φx+τ̂ + e−µφ†x+τ̂U†x ,τ̂φx ]

−κs
∑

x

[φ†xUx ,ŝφx+ŝ + φ†x+ŝU†x ,ŝφx ]→ (Dµφ)†Dµφ

and the self-interaction is:

Sλ = λ
∑

x

(
φ†xφx − 1

)2
+
∑

x

φ†xφx

In this talk λ→∞, φ†xφx is frozen to 1. The Abelian Higgs model
becomes:

S = −βpl
∑

x

cos (Ax ,ŝ + Ax+ŝ,τ̂ − Ax+τ̂ ,ŝ − Ax ,τ̂ )

−2κτ cos (θx+τ̂ − θx + Ax ,τ̂ − ıµ)− 2κs cos (θx+ŝ − θx + Ax ,ŝ)
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The λ→∞ limit: discrete formulation

The Fourier expansion
exp[2κνcos(θx+ν̂−θx +Ax ,ν̂)] =

∑∞
n=−∞ In(2κν)exp(ın(θx+ν̂−θx +Ax ,ν̂))

leads to the partition function in terms of discrete sums:

e−Seff =
∑
{m�}

{∏
�

Im�(βpl)
∏

x

[
Inx,ŝ (2κs)× Inx,τ̂ (2κτ ) exp(µnx ,τ̂ )

]}
,

Where nx ,ŝ = mbelow −mabove, nx ,τ̂ = mright −mleft (Gauss’s Law).
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Attaching tensors to plaquettes and links

Define tn(z) ≡ In(z)/I0(z) and attach:

• B(�) tensor to every plaquette:

B(�)
m1m2m3m4

=

{
tm�(βpl), if m1 = m2 = m3 = m4 = m�

0, otherwise.

• A(s) tensor to each horizontal link:

A(s)
mupmdown

= t|mdown−mup|(2κs),

• A(τ) tensor to each vertical link:

A(τ)
mleft mright

= t|mleft−mright |(2κτ ) eµ(mright−mleft ).
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Tensor Renormalization Group approach: Z = Tr [
∏

T ]

Z =∝ Tr

∏
h,v ,�

A(s)
mupmdown

A(τ)
mright mleft

B(�)
m1m2m3m4


The traces are performed by contracting the indices as shown:

The quantum numbers on the links are completely determined by the
quantum numbers of the plaquettes.

Z =∝ Tr
[
TNτ

]
, T =

√
BA
√
B
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The model

This model has a continuous-time limit (always gauge invariant).
The new variables have a discrete spectrum.
Continuous-time limit: take βpl , κτ →∞, and κs,a→ 0, such that

U ≡ 1
βpla

=
g2

a
, Y ≡ 1

2κτa
, X ≡ 2κs

a

are held constant.
The Hamiltonian for 1� βpl � κτ is:

H =
U
2

Ns∑
i=1

(Lz
i )2 +

Y
2

′∑
i

(Lz
i+1 − Lz

i )2 − X
Ns∑
i=1

Ux
i

with

Lz |m〉 = m|m〉, Ux =
1
2

(U+ + U−), U±|m〉 = |m ± 1〉.
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The time continuum limit of Abelian Higgs model

original lattice→ a, κs smaller &
βpl , κτ larger

a, κs smaller &
βpl , κτ larger

a, κs smaller &
βpl , κτ larger
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The observable

Polyakov loop: a Wilson loop wrapped around the temporal direction
of the lattice. This operator:

is a product of gauge fields in the time
direction.
is an order parameter for confinement in
gauge theories.
has a continuous-time limit which adds a
term to the Hamiltonian

H → H ′ =
U
2

Ns∑
i=1

(Lz
i )2 +

Y
2

′∑
i 6= Ns

2

(Lz
i+1 − Lz

i )2

+
Y
2

(Lz
Ns
2 +1
− Lz

Ns
2
− 1)2 − X

Ns∑
i=1

Ux
i

P =
Nτ∏

n=1

Ux∗+nτ̂ ,τ .
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Polyakov loop: Lagrangian data

Initial work led us to
confirm that for large Nτ :

〈P〉 ' e−a∆ENτ

with aNτ = 1
T .

∆E is the energy gap
between a system with a
Polyakov loop, and one
without.
We investigated the
finite-size scaling of ∆E
and its dependence on
βpl = 1/g2 and κ.
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Polyakov loop collapse: Lagrangian data
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Figure: A fit to the universal curve of the form
√

A + Bx . In this calculation,
space and Euclidean time are treated isotropically.
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P-loop: universal function + collapse across limits
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Data collapse of Ns∆E defined from the insertion of the Polyakov loop
(lower set) or with 1-0 boundary conditions (upper set), as a function of
UN2

s , or g(Ns)2 (collapse of 24 data sets each).
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P-loop collapse breaking: small Ns, large g (large U)

10-1 100 101 102 103 104 105 106

(Nsg)
2
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N
s∆
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Ns=16

Ns=32

Data collapse across different Ns for sufficiently small g, and collapse breaking across
different Ns at large g in the case of isotropic coupling. Here κ = 1.6, and Dbond = 41
was used in the HOTRG calculations.
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Optical lattice implementation with a multi-leg ladder

H̄ =
Ũg

2

∑
i

(
L̄z

(i)

)2
+

Ỹ
2

∑
i

(L̄z
(i) − L̄z

(i+1))2 − X̃
∑

i

L̄x
(i)

Ladder with one atom per rung: tunneling along the vertical direction, no tunneling in
the horizontal direction, nearest-neighbor-rung attractive interaction. A parabolic
potential is applied in the spin (vertical) direction.
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Experimental proposal (arXiv:1803.11166)

Cold atoms on multi-leg ladder with Rydberg-dressed interaction

J

j

i

al

ar

Rc

V

S
p

in
La

tt
ic

e

Ĥ =− J
2

Ns∑
i=1

s−1∑
m=−s

(
â†m,i âm+1,i + h.c

)
−

Ns∑
i=1

s∑
m=−s

εm,i n̂m,i

+
Ns∑

i,i ′=1

s∑
m,m′=−s

Vm,m′,i,i ′ n̂m,i n̂m′,i ′
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Rydberg-dressed potential
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Effects of next-nearest-neighbor-rung interactions
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The quantum Ising model

In the case of 2 legs, we have the
S = 1/2 quantum Ising model:

Ĥ = −λ
∑

i

σ̂z
i σ̂

z
i+1 −

∑
i

σ̂x
i − h

∑
i

σ̂z
i

χquant =
1

Ns

∑
<i,j>

〈(σi − 〈σi〉)(σj − 〈σj〉)〉 ∝ ξ1−η ∝ |λ− 1|−ν(1−η)

Data collapse: χquant ′ = χquantN−(1−η)
s , λ′ = N1/ν

s (λ− 1), h′ = hN15/8
s
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O(2) model and time continuum limit
For βpl →∞, λ→∞, we have the O(2) model, and the Hamiltonian:

Ĥ =
Ũ
2

∑
i

(
L̂z

(i)

)2
− µ̃

∑
i

L̂z
(i) −

J̃
4

∑
i

(
L̂+

(i)L̂
−
(i+1) + L̂−(i)L̂

+
(i+1)

)
,

[Ĥ can also be obtained by following Fradkin, Susskind, Kogut, Polyakov, ...]

For large Ũ = 1
2κτ a and µ̃ ' Ũ

2 , the O(2) model is approximated by a single-species
Bose Hubbard model:

ĤBH =
U
2

∑
i

n̂i(n̂i − 1)− J
∑

i

(
â+

(i)â
−
(i+1) + â−(i)â

+
(i+1)

)
,

Ns = 16 OBC

Color is S2 of time-continuum O(2)

Stripes are jumps in particle
number

Black lines are particle number
boundaries for Bose Hubbard
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Entanglement entropy of O(2)

n-th order Rényi entropy: Sn(A) = 1
1−n ln(Tr(ρ̂n

A)).

Calabrese-Cardy CFT predicts (to leading order):

Sn(Ns) =

{
Kn + c(n+1)

6n ln Ns for PBC
K ′n + c(n+1)

12n ln Ns for OBC.

where the central charge c = 1 for O(2).

Including all finite-size corrections that we know, the function to fit
Sn data of small volumes is

Sn(Ns, l) = Bn + An ln

[
Ns sin

(
πl
Ns

)]
+ Cn

cos(πl)
(Ns)pn

∣∣∣∣sin
(
πl
Ns

)∣∣∣∣−pn

+
Dn

ln2(Ns)
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Rényi entropy and fit coefficients for O(2)

4κsκτ = 0.01,2µκτ = 0.5

Left: The 1st-order and 2nd-order Rényi entropies scaling with system size for
4κsκτ (J̃/Ũ) = 0.01, 2µκτ (µ̃/Ũ) = 0.5 in time continuum limit. Right: Values for An

and pn from the least-squares fits to DMRG data up to Ns = 64.
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Rényi entropy and fit coefficient for O(2)

4κsκτ = 4,2µκτ = 0

Left: The 1st-order and 2nd-order Rényi entropy scaling with system size for
4κsκτ (J̃/Ũ) = 4, 2µκτ (µ̃/Ũ) = 0 in time continuum limit. Right: Values for An from
the least-squares fits to DMRG data up to Ns = 64.
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Rényi entropy and fit coefficient for O(2) and BH

Top: S2 at half-filling with OBCs for the Bose-Hubbard model and the O(2),
J/U = 0.005 (left) and J/U = 0.1 (right). Bottom: Values of A2 as a function of the
maximal values of Ns used in the fit, the bands represent departures of 1% (left) and
5% (right) from the expected value of 0.125.
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Finite Temperature Effects

S2 at half-filling for BH systems with
J/U = 0.1 and synthetically gener-
ated data (SGD) with random Gaus-
sian fluctuations with σS2 = 0.02. We
find σA2 ' 3.1σS2 .

S2 as a function of the logarithm of sys-
tem size with a finite temperature and
l = Ns/2. Here U = 1 and T = 0.04.
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Conclusions

We have proposed a gauge-invariant approach for the quantum
simulation of the Abelian Higgs model.
The tensor renormalization group approach provides a discrete
formulation in the limit λ→∞ (suitable for quantum computing)
Calculations of the Polyakov loop at finite Ns and small gauge
coupling show a universal behavior.
A ladder of cold atoms with Ns rungs, one atom per rung, and
2s + 1 legs is a candidate system for experimental realization
Proof of principle: data collapse for the quantum Ising model.
The O(2) limit can be simulated with simple Bose-Hubbard model
to extract universal quantities.
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