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Main point: proposal for cold-atom quantum simulator for the Abelian
Higgs model in 1+1 dimensions.

@ Motivation

@ The lattice Abelian Higgs model (scalar QED) in 1+1 dimensions
(PRD 92, 076003)

@ The Hamiltonian
@ Data collapse for Polyakov loop (arXiv:1803.11166)

@ Possible experimental realization: cold atoms on physical ladders
+ Rydberg-dressed interactions

@ Simpler limits: quantum Ising model and the O(2) model
@ Conclusions
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@ Lattice QCD has been very successful at establishing that QCD is
the theory of strong interaction, however some aspects remain
inaccessible to classical computing.

@ Finite density calculations: sign problem with Monte Carlo
calculations with complex actions.

@ Real time evolution: requires detailed information about the
Hamiltonian and the eigenstates which is usually not available
from conventional MC simulations at Euclidean time.

@ Successes in using cold atoms to quantum simulate Condensed
Matter systems (Mott transition, AFM order, BCS-BEC crossover,
etc).
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The Abelian Higgs model on a 1+1 space-time lattice

@ complex (charged) scalar field ¢y = |¢y|€%* attached to the
space-time sites x
@ Abelian gauge field Uy, = €/+) on the links from x to x + /.

S=8,4+8,+8, Z= / Do DsDUe™S
where the gauge part is:
Sg=—Bo > > ReTr[Us,]
X v<p

Ux’l“j = UX7§UX+§7%UT A AU‘r A 7 F;LV‘F‘LV Rﬁ

X+7,8 ~ X, T
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The Abelian Higgs model on a 1+1 space-time lattice
the hopping part is:

Sh = —kr Z[eﬂ¢iux,+¢x++ +e 7l Ul 4]
—HSZ[qﬁx L 80x18 + B, s UL sdx] — (D,0) Do
and the self-interaction is:
S1=2Y (shox 1) + 3 elox
X x

In this talk A — oo, ¢L¢X is frozen to 1. The Abelian Higgs model
becomes:

S = _Bpl Z Cos (Ax,é + Ax—&-é,f— - Ax—&-f—,é - AX,?)
X

—2k7 €08 (Ox 47 — Ox + Axz — 1) — 2Kgcos (05 — Ox + Ay 3) Rﬁ
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The A — oo limit: discrete formulation

The Fourier expansion

exp(2k,€08(0x+5—Ox+Ax )] = > pe o In(2K,)exp(en(Ox1o—O0x+Ax 5))
leads to the partition function in terms of discrete sums:

o Ser  — Z {H /mu(ﬁp/)H |:/nXY§(21€s) X Inx’%(2/<cT)exp(unx,$)] } ,
O X

{mg}

Where ny s = Mpeiow — Mavoves Nx,z = Mright — Myett (Gauss’s Law).

Mapove

Miert Myight
Mpelow

Ny
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Attaching tensors to plaquettes and links

Define t,(z) = I5(z2)/Ilh(z) and attach:

o B tensor to every plaquette:

B:(nD)m Mama = tmg (Bpr),  if My =mp=m3=my=mg
e 0, otherwise.

o AS) tensor to each horizontal link:

A(S)

MypMown — t‘mdown_mup|(2'%s)’

e A(™) tensor to each vertical link:

s = 1 Mright —Miett)
Amleftmright - tIm,ef,—m,,ghd(zﬁT) € .
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Tensor Renormalization Group approach: Z = Tr[[] T]

Z =< Tr | [T Ao Ao B

Muyp Mdown mrightmleft My M2M3 My
h,v,0

The traces are performed by contracting the indices as shown:

The quantum numbers on the links are completely determined by the
quantum numbers of the plaquettes.

Z =xTr [TNT} . T=+VBAVB
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The model

@ This model has a continuous-time limit (always gauge invariant).
@ The new variables have a discrete spectrum.
@ Continuous-time limit: take fp, k, — 0o, and ks, a — 0, such that

U

2
1 _ gfj Yy = 1 X 2rs
Bpia a 2k,a a

are held constant.
@ The Hamiltonian for 1 < By < k- is:

U
= Sy 22 - LR - XU
i=1
with

L#|m) = m|m), U":%(U++U’), Ufim) = |m+1). .
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The time continuum limit of Abelian Higgs model

original lattice —  a, ks smaller & a, ks smaller &  a,xg smaller &
Boi, k- larger Bpi, k- larger Boi, k- larger

ofm
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The observable

Polyakov loop: a Wilson loop wrapped around the temporal direction
of the lattice. This operator:

. . , . N
@ is a product of gauge fields in the time p_ H U
direction. 1L

@ is an order parameter for confinement in
gauge theories. ol lilolo

@ has a continuous-time limit which adds a
term to the Hamiltonian

N,
U S
H—>H’=§Z(Lf ZZ(L/+1 oL | 1o o
3 .
I El o1t ]ofo
Y z 2 s X .
5( Ns g~ %—1) —XZU,- space
- i

Shan-Wen Tsai (UCR) Polyakov Loop with Cold Atoms SCCMS, UCR, June 8, 2018 11/28



Polyakov loop: Lagrangian data

@ Initial work led us to
confirm that for large N;:

<P> ~ efaAEN,F

with aN, = .

@ AE is the energy gap
between a system with a
Polyakov loop, and one
without.

@ We investigated the
finite-size scaling of AE
and its dependence on

B =1/9% and .
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Polyakov loop collapse: Lagrangian data

k=16, f(r)=V A+Bx

0.9 T
e o NS =4

35

(N,9)°

Figure: A fit to the universal curve of the form /A + Bx. In this calculation,
space and Euclidean time are treated isotropically.

ofm
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P-loop: universal function + collapse across limits

1l1]1fofo
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Data collapse of N;sAE defined from the insertion of the Polyakov loop

(lower set) or with 1-0 boundary conditions (upper set), as a function of

UNZ, or g(Ns)? (collapse of 24 data sets each). Em
R
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P-loop collapse breaking: small Ng, large g (large U)

10" ‘ ‘
e o N, =4 ot WS o
m m N =8 *
N 9% | amaaa 4

A A N,=16 {AA“
<3 * Ns:32 At g EEmEE E
< —
= o @mwee o
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(N,g)°
Data collapse across different Ns for sufficiently small g, and collapse breaking across

different Ns at large g in the case of isotropic coupling. Here « = 1.6, and Dyong = 41
was used in the HOTRG calculations.
L
i
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Optical lattice implementation with a multi-leg ladder

A= 5 (00) g S T -

5 states ladder with 9 rungs

U/2 0

2U
&

Ladder with one atom per rung: tunneling along the vertical direction, no tunneling in
the horizontal direction, nearest-neighbor-rung attractive interaction. A parabolic .
potential is applied in the spin (vertical) direction. R ﬁ
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Experimental proposal (arXiv:1803.11166)

Cold atoms on multi-leg ladder with Rydberg-dressed interaction

R ‘
3 T .
5 V¢SRS NS S ‘/_T i
A J Ns s—1 Ns s
H=— > Z (éjm/ém—&-hi + h-C> - Z Z 6mJﬁm,i
i=1 m=—s i=1 m==$
Ns s

+ E g Vi i it Dim, il iv

i,i'=1 mm'=—s
L
v i
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Rydberg-dressed potential

of ' — P —
= e Ai=2
> .
= ’
c /
> [}
8 AN=1¢
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Effects of next-nearest-neighbor-rung interactions

[ 10BC '
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0 20 40 60 80 100 120
2n2
g°Ng

Shan-Wen Tsai (UCR)

Polyakov Loop with Cold Atoms

PL+00BC ‘ ‘ ‘ o]

o N;=8 o N;=8,Ns(AE — AlHywwr)

O Ns=16 & Ns =16, Ns(AE — AlHnwwri)) 4
A Ns=24 & Ns=24,Ns(AE — A(Hnnri))
0 Ns=32 w Ng =32, Ns(AE — A(Hnnnrr)) 4

0 20 40 60 80 100 120

g°N?

ofm

SCCMS, UCR, June 8, 2018 19/28



The quantum Ising model

Quantum Ising Model, hfgy=1

0671 o« N,=8h=0020263 2E
sl o Nneosomm  o& .
In the case of 2 legs, we have the &
. 0.4
S = 1/2 quantum Ising model: ) 5
03 o .
A e "
~AZnZ ~AX AZ 0.2 .
H:—)\ E Ui0i+1_ E O-I_hg U,’ ";.
. . . 0.1 %o
] I I
0.0
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Xt = S (o= (o) — o)) o € o JA— 170

N,
S <ij>

Data collapse: yduant’ — Xq“a”’Ns_“_”), N = N;/”()\ —1),H = hN;‘r’/8

ofm

Shan-Wen Tsai (UCR) Polyakov Loop with Cold Atoms SCCMS, UCR, June 8, 2018 20/28



O(2) model and time continuum limit

For By — 00, A — oo, we have the O(2) model, and the Hamiltonian:
N N
T2 Z ( (Z’)) - HZ o - 4 Z (LZ)L(M) + L(i)LZH)) ;
1 i i

[Fl can also be obtained by following Fradkin, Susskind, Kogut, Polyakov, ...]

For large U = 5=— and ji ~ 2 , the O(2) model is approximated by a single-species
Bose Hubbard model
U At A _
Her = 5 2 filhi - 1)*‘12 (&g + 2pain) -

i 12 ® N; =16 OBC

. 1o Color is S of time-continuum O(2)

. o8 @ Stripes are jumps in particle

] 0.6 number

. 0.4 @ Black lines are particle number

. 02 boundaries for Bose Hubbard

A 0.0 R m
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Entanglement entropy of O(2)

@ n-th order Rényi entropy: Sp(A) = 1 In(Tr(53)).

@ Calabrese-Cardy CFT predicts (to leading order):

Ko+ 20 1n Ng - for PBC
K} + 2 10 N for OBC.

Sn(Ns) = {

where the central charge ¢ = 1 for O(2).

@ Including all finite-size corrections that we know, the function to fit
S, data of small volumes is

. . [l cos(wl) | . (=l
Sn(Ns,I) = Ba 4+ Asln [Ns sin (ﬁs):| + Cp (N&)Pr 'Sln (ﬁs)

—Pn N Dn
|n2(Ns)

ofm
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Rényi entropy and fit coefficients for O
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Left: The 1st-order and 2nd-order Rényi entropies scaling with system size for
4rskr(J/U) = 0.01,2uk,(fi/U) = 0.5 in time continuum limit. Right: Values for A,
and p, from the least-squares fits to DMRG data up to Ns = 64.
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Rényi entropy and fit coefficient for

1.4
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Left: The 1st-order and 2nd-order Rényi entropy scaling with system size for
4rskr(J/U) = 4,2uk-(fi/U) = 0 in time continuum limit. Right: Values for A, from

the least-squares fits to DMRG data up to Ns = 64.
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Rényi entropy and fit coefficient for O(2) and BH
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Top: S, at half-filling with OBCs for the Bose-Hubbard model and the O(2),

J/U = 0.005 (left) and J/U = 0.1 (right). Bottom: Values of A, as a function of the
maximal values of Ns used in the fit, the bands represent departures of 1% (left) and
5% (right) from the expected value of 0.125.
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Finite Temperature Effects

1.5/ =« pMRGT-0 | , + DMRG T—0
» DMRG T=0.2J P = DMRG T=0.2J
1.3} . pMRG r=0.4s + DMRG 7=0.4J
1.1l Bsepr=o | ¢ b sep7-0
0.9} ) ‘,/\ o~ S\
0.7+ 2 Ya\% \ \ //'
0.5 // \.// Y /\\/
03l ¥
12 16 20 24 281 2 3 4 5 6 7
In[N] l
O(IZ 1.6 2.0 2.4 2.8
S, at half-filling for BH systems with ()
J/U = 0.1 and synthetically gener-
ated data (SGD) with random Gaus- S; as a function of the logarithm of sys-
sian fluctuations with o5, = 0.02. We tem size with a finite temperature and
find 04, ~ 3.10s,. I =Ns/2. Here U =1and T = 0.04.
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Conclusions

@ We have proposed a gauge-invariant approach for the quantum
simulation of the Abelian Higgs model.

@ The tensor renormalization group approach provides a discrete
formulation in the limit A — oo (suitable for quantum computing)

@ Calculations of the Polyakov loop at finite Ny and small gauge
coupling show a universal behavior.

@ A ladder of cold atoms with Ns rungs, one atom per rung, and
2s + 1 legs is a candidate system for experimental realization

@ Proof of principle: data collapse for the quantum Ising model.

@ The O(2) limit can be simulated with simple Bose-Hubbard model
to extract universal quantities.
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